Forward-Secure Hierarchical Predicate Encryption
نویسندگان
چکیده
Secrecy of decryption keys is an important pre-requisite for security of any encryption scheme and compromised private keys must be immediately replaced. Forward Security (FS), introduced to Public Key Encryption (PKE) by Canetti, Halevi, and Katz (Eurocrypt 2003), reduces damage from compromised keys by guaranteeing confidentiality of messages that were encrypted prior to the compromise event. The FS property was also shown to be achievable in (Hierarchical) Identity-Based Encryption (HIBE) by Yao, Fazio, Dodis, and Lysyanskaya (ACM CCS 2004). Yet, for emerging encryption techniques, offering flexible access control to encrypted data, by means of functional relationships between ciphertexts and decryption keys, FS protection was not known to exist. In this paper we introduce FS to the powerful setting of Hierarchical Predicate Encryption (HPE), proposed by Okamoto and Takashima (Asiacrypt 2009). Anticipated applications of FS-HPE schemes can be found in searchable encryption and in fully private communication. Considering the dependencies amongst the concepts, our FS-HPE scheme implies forward-secure flavors of Predicate Encryption and (Hierarchical) Attribute-Based Encryption. Our FS-HPE scheme guarantees forward security for plaintexts and for attributes that are hidden in HPE ciphertexts. It further allows delegation of decrypting abilities at any point in time, independent of FS time evolution. It realizes zero-inner-product predicates and is proven adaptively secure under standard assumptions. As the “cross-product” approach taken in FS-HIBE is not directly applicable to the HPE setting, our construction resorts to techniques that are specific to existing HPE schemes and extends them with what can be seen as a reminiscent of binary tree encryption from FS-PKE.
منابع مشابه
Hierarchical Identity-Based Lossy Trapdoor Functions
Lossy trapdoor functions, introduced by Peikert and Waters (STOC’08), have received a lot of attention in the last years, because of their wide range of applications in theoretical cryptography. The notion has been recently extended to the identity-based scenario by Bellare et al. (Eurocrypt’12). We provide one more step in this direction, by considering the notion of hierarchical identity-base...
متن کاملOn Black-Box Constructions of Predicate Encryption from Trapdoor Permutations
Predicate encryption is a recent generalization of identitybased encryption (IBE), broadcast encryption, attribute-based encryption, and more. A natural question is whether there exist black-box constructions of predicate encryption based on generic building blocks, e.g., trapdoor permutations. Boneh et al. (FOCS 2008) recently gave a negative answer for the specific case of IBE. We show both n...
متن کاملForward-Secure Hierarchical IBE with Applications to Broadcast Encryption
A forward-secure encryption scheme protects secret keys from exposure by evolving the keys with time. Forward security has several unique requirements in hierarchical identity-based encryption (HIBE) scheme: (1) users join dynamically; (2) encryption is joining-time-oblivious; (3) users evolve secret keys autonomously. We define and construct a scalable pairing-based forward-secure HIBE (fsHIBE...
متن کاملPredicate Encryption with Various Properties
Predicate encryption (PE) is a new primitive which supports flexible control over access to encrypted data. In PE schemes, users’ decryption keys are associated with predicates f and ciphertexts encode attributes a that are specified during the encryption procedure. A user can successfully decrypt if and only if f(a) = 1. In this thesis, we will investigate several properties that are crucial t...
متن کاملAnonymous Hierarchical Identity-Based Encryption with Constant Size Ciphertexts
Efficient and privacy-preserving constructions for search functionality on encrypted data is important issues for data outsourcing, and data retrieval, etc. Fully secure anonymous Hierarchical ID-Based Encryption (HIBE) schemes is useful primitives that can be applicable to searchable encryptions [4], such as ID-based searchable encryption, temporary searchable encryption [1], and anonymous for...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012